These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors.
    Author: Hosseini A, Nejati H, Massoud Y.
    Journal: Opt Express; 2008 Feb 04; 16(3):1475-80. PubMed ID: 18542222.
    Abstract:
    In this paper, we present a modeling and design methodology based on characteristic impedance for plasmonic waveguides with Metal-Insulator-Metal (MIM) configuration. Finite-Difference Time-Domain (FDTD) simulations indicate that the impedance matching results in negligible reflection at discontinuities in MIM heterostructures. Leveraging the MIM impedance model, we present a general Transfer Matrix Method model for MIM Bragg reflectors and validate our model against FDTD simulations. We show that both periodically stacked dielectric layers of different thickness or different material can achieve the same performance in terms of propagation loss and minimum transmission at the central bandgap frequency in the case of a finite number of periods.
    [Abstract] [Full Text] [Related] [New Search]