These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Salivary testosterone and cortisol responses in professional rugby players after four resistance exercise protocols.
    Author: Beaven CM, Gill ND, Cook CJ.
    Journal: J Strength Cond Res; 2008 Mar; 22(2):426-32. PubMed ID: 18550957.
    Abstract:
    The acute response of free salivary testosterone (T) and cortisol (C) concentrations to four resistance exercise (RE) protocols in 23 elite men rugby players was investigated. We hypothesized that hormonal responses would differ among individuals after four distinct RE protocols: four sets of 10 repetitions (reps) at 70% of 1 repetition maximum (1RM) with 2 minutes' rest between sets (4 x 10-70%); three sets of five reps at 85% 1RM with 3 minutes' rest (3 x 5-85%); five sets of 15 reps at 55% 1RM with 1 minute's rest (5 x 15-55%); and three sets of five reps at 40% 1RM with 3 minutes' rest (3 x 5-40%). Each athlete completed each of the four RE protocols in a random order on separate days. T and C concentrations were measured before exercise (PRE), immediately after exercise (POST), and 30 minutes post exercise (30 POST). Each protocol consisted of four exercises: bench press, leg press, seated row, and squats. Pooled T data did not change as a result of RE, whereas C declined significantly. Individual athletes differed in their T response to each of the protocols, a difference that was masked when examining the pooled group data. When individual data were retrospectively tabulated according to the protocol in which each athlete showed the highest T response, a significant protocol-dependent T increase for all individuals was revealed. Therefore, RE induced significant individual, protocol-dependent hormonal changes lasting up to 30 minutes after exercise. These individual responses may have important ramifications for modulating adaptation to RE and could explain the variability often observed in studies of hormonal response to RE.
    [Abstract] [Full Text] [Related] [New Search]