These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro. Author: Daniell H, Rebeiz CA. Journal: Biotechnol Bioeng; 1984 May; 26(5):481-7. PubMed ID: 18553343. Abstract: The massive conversion of delta-aminolevulinic acid (ALA) to protochlorophyllide (Pchlide) and the massive conversion of chlorophyllide a (Chlide a) to chlorophyll a (Chl a) are two essential conditions for the ALA-dependent assembly of photosynthetic membranes in vitro. In this work, we describe the development of a cell-free system capable of the forementioned biosynthetic activities at rates higher than in vivo, for the first 2 h of dark-incubation. The cell-free system consisted of (1) etiochloroplasts prepared from kinetin and gibberellic-acid-pretreated cucumber cotyledons, and (2) cofactors and additives described elsewhere and which are needed for the massive conversion of ALA to Pchlide, (3) high concentrations of ATP, MgCl(2), and an isoprenol alcohol such as phytol, were required for the massive conversion of Chlide a to Chl a. An absolute and novel requirement of Mg(2+) for the conversion of Chlide a to Chl a was also demonstrated. In addition to the role of phytol as a substrate for the conversion of Chlide a to Chl a, the data suggested that this alcohol may also be involved in the regulation of the reactions between ALA and Pchlide. It is proposed that during greening, the conversion of Chlide a to Chl a may follow different biosynthetic rates, having different substrate and cofactor requirements, depending on the stage of plastid development.[Abstract] [Full Text] [Related] [New Search]