These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Urokinase bound to fibrocollagenous tubes: an in vitro kinetic study. Author: Senatore FF, Bernath FR. Journal: Biotechnol Bioeng; 1986 Jan; 28(1):58-63. PubMed ID: 18553842. Abstract: Urokinase (UK) has been immobilized to the inner surfaces of fibrocollagenous tubes (FCT) in an attempt to develop a fibrinolytic biomaterial which may be suitable for use as a small diameter vascular prosthesis. The enzyme was bound by adsorption followed by glutaraldehyde crosslinking. An in vitro kinetic study of immobilized urokinase was conducted by employing the tubular material as a flow through reactor operated in a batch recycle mode in which the esterolysis of the model substrate, N-alpha-acetyl-L-lysine methyl ester (ALME), was monitored as a function of substrate concentration, recycle flow rate, and temperature. Results were compared with data from the soluble enzyme reaction, which was conducted in the presence and absence of 10% swine skin gelatin, in order to identify the specific effects of a collagenous microenvironment. Observed rates for the UK-FCT catalyzed reaction were observed to be dependent on recycle flow rates below 12 mL/min (Re = 107). Apparent Michaelis-Menten rate parameters were determined by a nonlinear search technique for two flow rates: one above the critical point for external diffusion effects (Re = 282) and one within the mass-transfer-limited region (Re = 71). When the latter data were corrected for external diffusion by applying the Graetz correlation for laminar flow in tubes to estimate the mass transfer coefficient, the corrected K(m) of 6.45 +/- 0.38 mM agreed very closely with the diffusion free parameter (i.e. 6.13 +/- 0.63). Furthermore, this value was observed to be an order of magnitude higher than that of the soluble enzyme but approximately equal to the K(m) of the soluble enzyme in a 10% gelatin environment (8.13 +/- 1.53 mM). It is postulated that the difference in kinetic parameters between soluble and collagen immobilized UK is due to an inherent interaction between collagen and enzyme rather than to mass transfer effects. Such an interaction is supported by the effects of collagen on thermal stability and energy of activation.[Abstract] [Full Text] [Related] [New Search]