These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bifurcate hydrogen bonds. Interaction of intramolecularly H-bonded systems with Lewis bases. Author: Sidorkin VF, Doronina EP, Chipanina NN, Aksamentova TN, Shainyan BA. Journal: J Phys Chem A; 2008 Jul 10; 112(27):6227-34. PubMed ID: 18553953. Abstract: The structure and the hydrogen bonding in the systems formed by the intramolecularly H-bonded systems, namely, maltol (3-hydroxy-2-methyl-4-pyrone), 5, 2,4,6-trinitrophenol, 6, acetylacetone enol, 7, with Lewis bases, phosgene, 8, dioxane, 9, and DMSO, 10, have been studied by density functional theory (B3LYP) and MP2 using the 6-311G* basis set. The continuum solvent effect was simulated by IEF-PCM model. The hydrogen bond analysis using the atoms in molecules (AIM) method was applied by using the MP2(full)/6-311++G** electron density to establish the nature of the bifurcate hydrogen bond (BHB) in these systems as well as contributory factors for its stabilization. The nature of interaction in the intermolecular H-complexes formed by compounds 5- 7 with the Lewis bases 8- 10 was shown to depend on the strength of the intramolecular hydrogen bond O...H and the strength of the base. The critical values of the CO...H and NO...H angles for which the formation of BHB is possible, have been determined.[Abstract] [Full Text] [Related] [New Search]