These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermodynamic scaling and the characteristic relaxation time at the phase transition of liquid crystals. Author: Roland CM, Bogoslovov RB, Casalini R, Ellis AR, Bair S, Rzoska SJ, Czuprynski K, Urban S. Journal: J Chem Phys; 2008 Jun 14; 128(22):224506. PubMed ID: 18554028. Abstract: The longitudinal relaxation time tau of a series of alkyl-isothiocyanato-biphenyls (nBT) liquid crystals in the smectic E phase was measured as a function of temperature T and pressure P using dielectric spectroscopy. This relaxation time was found to become essentially constant, independent of T and P, at both the clearing point and the lower temperature crystalline transition. tau(T,P) could also be superposed as a function of the product TV(gamma), where V is the specific volume and gamma is a material constant. It then follows from the invariance of the relaxation time at the transition that the exponent gamma superposing tau(T,V) can be identified with the thermodynamic ratio Gamma=- partial differential log(T(c)) partial differential log(V(c)), where the subscript c denotes the value at the phase transition. Analysis of literature data on other liquid crystals shows that they likewise exhibit a constant tau at their phase transitions. Thus, there is a surprising relationship between the thermodynamic conditions defining the stability limits of a liquid crystalline phase and the dynamic properties reflected in the magnitude of the longitudinal relaxation time.[Abstract] [Full Text] [Related] [New Search]