These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermodynamics of apoplastocyanin folding: comparison between experimental and theoretical results.
    Author: Yoshidome T, Kinoshita M, Hirota S, Baden N, Terazima M.
    Journal: J Chem Phys; 2008 Jun 14; 128(22):225104. PubMed ID: 18554061.
    Abstract:
    It has been experimentally shown that the folding of apoplastocyanin (apoPC) accompanies a very large enthalpic loss [N. Baden et al., J. Chem. Phys. 127, 175103 (2007)]. This implies that an even larger entropic gain occurs in stabilizing the folded structure to overcome the enthalpic loss. Here, we calculate the water-entropy gain upon the folding of apoPC using the angle-dependent integral equation theory combined with the multipolar water model and the recently developed morphometric approach. It is demonstrated that the calculated value is in quantitatively good accord with the value estimated from the experimental data by accounting for the conformational-entropy loss. According to a prevailing view, the water adjacent to a hydrophobic group is unstable especially in terms of the rotational entropy and the folding is driven primarily by the release of such unfavorable water to the bulk through the burial of nonpolar side chains. We show, however, that the resultant entropic gain is too small to elucidate the experimental result. The great entropic gain observed is ascribed to the reduction in the restriction for the translational motion of water molecules in the whole system.
    [Abstract] [Full Text] [Related] [New Search]