These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM.
    Author: Kim BG, Kang IJ.
    Journal: Ultramicroscopy; 2008 Sep; 108(10):1168-73. PubMed ID: 18554804.
    Abstract:
    Hepatitis B is a deadly disease, and is carried by 30% of the world's population. Antibodies are produced through a series of three manual vaccinations during infancy and childhood. However, the current needle vaccination not only induces pain in patients, but also can be inconvenient to administer. This is particularly true for the case of newborn babies. Intranasal vaccination is emerging as an alternative parenteral drug delivery method that facilitates drug delivery without causing pain. Chitosan, which is obtained through the deacetylation of chitin from crustacea, is a cationic polymer that is biodegradable, avirulent, and highly absorptive. In this study, ionic gelation between chitosan and TPP was conducted to synthesize chitosan nanoparticles with sizes of 200-400 nm and a surface potential of 55-60 mV, and which can be used as Hepatitis B vaccine carriers. Then, Hepatitis B antigen protein was impregnated to manufacture chitosan-recombinant gene vaccine protein (RGVP) nanoparticles. AFM, SEM, TEM, and STEM were used to analyze the manufactured nanoparticles, whose function as drug carriers and whose usefulness for intranasal vaccination were confirmed through in vivo tests with SD rats.
    [Abstract] [Full Text] [Related] [New Search]