These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. Author: Ay F, Catalkaya EC, Kargi F. Journal: J Hazard Mater; 2009 Feb 15; 162(1):230-6. PubMed ID: 18555599. Abstract: Advanced oxidation of an azo-dye, Direct Red 28 (DR 28) by photo-Fenton treatment was investigated in batch experiments using Box-Behnken statistical experiment design and the response surface analysis. Dyestuff (DR 28), H(2)O(2) and Fe(II) concentrations were selected as independent variables in Box-Behnken design while color and total organic carbon (TOC) removal (mineralization) were considered as the response functions. Color removal increased with increasing H(2)O(2) and Fe(II) concentrations up to a certain level. High concentrations of H(2)O(2) and Fe(II) adversely affected the color and TOC removals due to hydroxyl radical scavenging effects of high oxidant and catalyst concentrations. Both H(2)O(2) and Fe(II) concentration had profound effects on decolorization. Percent color removal was higher than TOC removal indicating formation of colorless organic intermediates. Complete color removal was achieved within 5min while complete mineralization took nearly 15min. The optimal reagent doses varied depending on the initial dyestuff dose. For the highest dyestuff concentration tested, the optimal H(2)O(2)/Fe(II)/dyestuff ratio resulting in the maximum color removal (100%) was predicted to be 715/71/250 (mgL(-1)), while this ratio was 1550/96.5/250 for maximum mineralization (97.5%).[Abstract] [Full Text] [Related] [New Search]