These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Magnesium dietary manipulation and recovery of function following controlled cortical damage in the rat.
    Author: Hoane MR, Gilbert DR, Barbre AB, Harrison SA.
    Journal: Magnes Res; 2008 Mar; 21(1):29-37. PubMed ID: 18557131.
    Abstract:
    Previous research has shown that dietary magnesium (Mg2+) deficiency prior to injury worsens recovery of function and that systemic administration of Mg2+ pre or post-injury significantly improves functional recovery. The purpose of the present study was to determine if manipulations in dietary Mg2+ would alter functional recovery following unilateral cortical injuries. Two weeks prior to injury, rats were placed on a customized diet enriched with Mg2+, deficient in Mg2+, or on a standard Mg2+ diet. Rats were then prepared with unilateral cortical contusion injuries (CCI) of the sensorimotor cortex. Two days following CCI, rats were tested on a battery of sensorimotor (vibrissae-forelimb placing and bilateral tactile adhesive removal tests), as well as the acquisition of reference memory in the Morris water maze. Serum analysis for Mg2+ prior to injury showed a diet-dependent modulation in levels. The Mg(2+)-enriched diet showed significantly higher levels of serum Mg2+ compared to the normal diet and the Mg(2+)-deficient diet showed significantly lower levels compared to the Mg(2+)-normal diet. On the placing and tactile removal tests Mg2+ deficiency significantly worsened recovery compared to the Mg(2+)-enriched and Mg(2+-)normal diet conditions. There were no statistically significant differences between the Mg(2+)-normal and Mg(2+)-enriched diets on the sensorimotor tests. On the acquisition of reference memory there were no significant difference between diet conditions; however, the Mg(2+)-deficient diet showed a trend toward impaired performance compared to the other diet conditions. The Mg(2+)-deficient diet resulted in a larger lesion cavity compared to the other diet conditions. These findings suggest that dietary Mg2+ modulates recovery of function.
    [Abstract] [Full Text] [Related] [New Search]