These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bis(2,2'-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10]phenanthroline)ruthenium: synthesis and electrochemical and electrochemiluminescence characterization. Author: Wei H, Yin J, Wang E. Journal: Anal Chem; 2008 Jul 15; 80(14):5635-9. PubMed ID: 18557630. Abstract: In this work, an electrochemiluminescence (ECL) reagent bis(2,2'-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10]phenanthroline)ruthenium complex (Ru-1) was synthesized, and its electrochemical and ECL properties were characterized. The synthesis of Ru-1 was confirmed by IR spectra, element analysis, and (1)H NMR spectra. For further study, its UV-vis absorption and fluorescence emission spectra were investigated. Ru-1 also exhibited quasi-reversible Ru (II)/Ru (III) redox waves in acetonitrile solution. The aqueous ECL behaviors of Ru-1 were also studied in the absence and in the presence of tripropylamine. The complex was fabricated on a gamma-(aminopropyl) triethoxysilane (APTES) pretreated indium tin oxide (ITO) substrate via aminolysis reaction between the 5,6-epoxy-5,6-dihydro-[1,10]phenanthroline ligand and APTES. The resulting Ru-1 modified ITO substrate exhibited a broad absorption band in the visible region (350-600 nm) and its fluorescence emission spectrum was centered at 622 nm. The Ru-1 modified ITO electrode showed relative low ECL response. To improve the solid-state ECL response, a gold nanoparticles (GNP)/Ru-1 modified ITO electrode was constructed. The mixing of GNP and Ru-1 could produce the aggregates, which were further immobilized onto a 3-mercaptopropyltrimethoxy-silane (3-MPTMS) pretreated ITO substrate via Au-S interactions to construct the GNP/Ru-1 modified electrode.[Abstract] [Full Text] [Related] [New Search]