These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway. Author: Yoo EJ, Ahlquist M, Bae I, Sharpless KB, Fokin VV, Chang S. Journal: J Org Chem; 2008 Jul 18; 73(14):5520-8. PubMed ID: 18557650. Abstract: Combined analyses of experimental and computational studies on the Cu-catalyzed three-component reactions of sulfonyl azides, terminal alkynes and amines, alcohols, or water are described. A range of experimental data including product distribution ratio and trapping of key intermediates support the validity of a common pathway in the reaction of 1-alkynes and two distinct types of azides substituted with sulfonyl and aryl(alkyl) groups. The proposal that bimolecular cycloaddition reactions take place initially between triple bonds and sulfonyl azides to give N-sulfonyl triazolyl copper intermediates was verified by a trapping experiment. The main reason for the different outcome from reactions between sulfonyl and aryl(alkyl) azides is attributed to the lability of the N-sulfonyl triazolyl copper intermediates. These species are readily rearranged to another key intermediate, ketenimine, into which various nucleophiles such as amines, alcohols, or water add to afford the three-component coupled products: amidines, imidates, or amides, respectively. In addition, the proposed mechanistic framework is in good agreement with the obtained kinetics and competition studies. A computational study (B3LYP/LACV3P*+) was also performed confirming the proposed mechanistic pathway that the triazolyl copper intermediate plays as a branching point to dictate the product distribution.[Abstract] [Full Text] [Related] [New Search]