These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana. Author: Fellenberg C, Milkowski C, Hause B, Lange PR, Böttcher C, Schmidt J, Vogt T. Journal: Plant J; 2008 Oct; 56(1):132-45. PubMed ID: 18557837. Abstract: Cation- and S-adenosyl-L-methionine (AdoMet)-dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT-like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi-suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N ',N ''-bis-(5-hydroxyferuloyl)-N '''-sinapoylspermidine compensated for by N(1),N(5),N(10)-tris-(5-hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5-hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi-mediated suppression data of the corresponding gene suggest a role of this cation-dependent CCoAOMT-like protein in the stamen/pollen development of A. thaliana.[Abstract] [Full Text] [Related] [New Search]