These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells. Author: Bhattacharya K, Cramer H, Albrecht C, Schins R, Rahman Q, Zimmermann U, Dopp E. Journal: J Toxicol Environ Health A; 2008; 71(13-14):976-80. PubMed ID: 18569605. Abstract: Surface-treated titanium dioxide (TiO(2)) particles coated with vanadium pentoxide (V(2)O(5)) are used industrially for selective catalytic reactions such as the removal of nitrous oxide from exhaust gases of combustion power plants (SCR process) and in biomaterials for increasing the strength of implants. In the present study, untreated ultrafine TiO(2) particles (anatase, diameter: 30-50 nm) and vanadium pentoxide (V(2)O(5))-treated anatase particles were tested for their cyto- and genotoxic effects in V79 cells (hamster lung fibroblasts). Cytotoxic effects of the particles were assessed by trypan blue exclusion, while genotoxic effects were investigated by micronucleus (MN) assay. In addition, the generation of reactive oxygen species (ROS) was determined by the acellular method of electron spin resonance technique (ESR) and by the cellular technique of determination of thiobarbituric acid-reactive substances (TBARS). Our results demonstrate that V(2)O(5)-treated TiO(2) particles induce more potent cyto- and genotoxic effects than untreated particles. Further, acellular and cellular radical formation was more pronounced with V(2)O(5)-anatase than untreated anatase. Thus, data indicate that V(2)O(5)-treated TiO(2) particles were more reactive than natural anatase and capable of inducing DNA damage in mammalian cells through production of free radicals.[Abstract] [Full Text] [Related] [New Search]