These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study. Author: Díaz N, Suárez D. Journal: J Phys Chem B; 2008 Jul 17; 112(28):8412-24. PubMed ID: 18570467. Abstract: The MMP-2 reaction mechanism is investigated by using different computational methodologies. First, quantum mechanical (QM) calculations are carried out on a cluster model of the active site bound to an Ace-Gly approximately Ile-Nme peptide. Along the QM reaction path, a Zn-bound water molecule attacks the Gly carbonyl group to give a tetrahedral intermediate. The breaking of the C-N bond is completed thanks to the Glu 404 residue that shuttles a proton from the water molecule to Ile-N atom. The gas-phase QM energy barrier is quite low ( approximately 14 kcal/mol), thus suggesting that the essential catalytic machinery is included in the cluster model. A similar reaction path occurs in the MMP-2 catalytic domain bound to an octapeptide substrate according to hybrid QM and molecular mechanical (QM/MM) geometry optimizations. However, the rupture of the Gly( P 1) approximately Ile( P 1') amide bond is destabilized in the static QM/MM calculations, owing to the positioning of the Ile( P 1') side chain inside the MMP-2 S 1' pocket and to the inability of simple energy miminization methodologies to properly relax complex systems. Molecular dynamics simulations show that these steric limitations are overcome easily through structural fluctuations. The energetic effect of structural fluctuations is taken into account by combining QM energies with average MM Poisson-Boltzmann free energies, resulting in a total free energy barrier of 14.8 kcal/mol in good agreement with experimental data. The rate-determining event in the MMP-2 mechanism corresponds to a H-bond rearrangement involving the Glu 404 residue and/or the Glu 404-COOH --> N-Ile( P 1') proton transfer. Overall, the present computational results and previous experimental data complement each other well in order to provide a detailed view of the MMPs catalytic mechanism.[Abstract] [Full Text] [Related] [New Search]