These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ab initio study of the KrH+ photodissociation. Author: Alekseyev AB, Buenker RJ, Liebermann HP. Journal: J Chem Phys; 2008 Jun 21; 128(23):234308. PubMed ID: 18570500. Abstract: The multireference spin-orbit configuration interaction method is employed to calculate potential energy curves for the ground and low-lying excited states of the KrH(+) cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of KrH(+). On this basis, the partial and total absorption spectra in this energy range are obtained. It is shown that the A-band absorption is dominated by the parallel A (1)Sigma(+)<--X (1)Sigma(+) transition. In the low-energy part of the band (<83x10(3) cm(-1)) the absorption is mainly caused by the spin-forbidden b (3)Pi(0(+) )<--X (1)Sigma(+) excitation, while perpendicular transitions to the B (1)Pi and b (3)Pi(1) states are significantly weaker. The branching ratio Gamma for the photodissociation products is calculated and it is shown to increase smoothly from 0 in the red tail of the band to 1 at E>or=90x10(3) cm(-1). The latter value corresponds to the exclusive formation of the spin-excited Kr(+)((2)P(12)) ions, which may be used to obtain laser generation on the Kr(+)((2)P(12)-(2)P(32)) transition.[Abstract] [Full Text] [Related] [New Search]