These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method.
    Author: Qiu L, Jing N, Jin Y.
    Journal: Int J Pharm; 2008 Sep 01; 361(1-2):56-63. PubMed ID: 18573626.
    Abstract:
    This study developed an active loading method for encapsulating chloroquine diphosphate (CQ) into liposomes. The effects of different formulation factors on the encapsulation efficiency (EE) and the size of CQ liposomes were investigated. These factors included the internal phase of liposomes, the external phase of liposomes, the ratio of drug to soybean phosphatidylcholine (drug/SPC), the ratio of cholesterol to soybean phosphatidylcholine (Chol/SPC), and the incubation temperature and time. The EE (93%) was obtained when using drug/SPC (1:50 mass ratio), SPC/Chol (1:5 mass ratio) at 0.10 M citrate-sodium citrate buffer (pH 3.6). As 5 mol% methoxypoly(ethylene glycol)(2,000) cholesteryl succinate (CHS-PEG(2000)) or distearoyl phosphatidylethanolamine-poly (ethylene glycol)(2,000) (DSPE-PEG(2000)) was added, the size of particle was reduced and the EE was improved. Freeze-drying with 5% trehalose as a cryoprotectant was carried out to achieve long-term stability. The drug release studies were performed in vitro simulating the desired application conditions, such as physiological fluids (pH 7.4), tumor tissues (pH 6.5) and endosomal compartments (pH 5.5). The release of CQ from the liposomes prepared via remote loading showed the significant pH-sensitivity and retention properties, which favored the application of liposomal CQ at tumor tissues and endosomal compartments.
    [Abstract] [Full Text] [Related] [New Search]