These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery.
    Author: Gupta PK, Subramani J, Leo MD, Sikarwar AS, Parida S, Prakash VR, Mishra SK.
    Journal: Eur J Pharmacol; 2008 Sep 04; 591(1-3):171-6. PubMed ID: 18577383.
    Abstract:
    The present study examined the role of voltage-gated potassium (K(v)) channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine-evoked endothelium-dependent relaxation and NO release in the rat carotid artery. The acetylcholine-induced relaxation was drastically inhibited by 94% and 82%, respectively in the presence of either 100 microM N(G)-nitro-l-arginine methyl ester (L-NAME) or 10 microM 1H-[1,2,4]oxadiazolo[4,3,a]quinoxalin-1-one (ODQ), while it was abolished following endothelium removal. 4-aminopyridine (1 mM), a preferential blocker of the K(v) channels significantly decreased the vasodilator potency, as well as efficacy of acetylcholine (pD(2) 5.7+/-0.09, R(max) 86.1+/-3.5% versus control 6.7+/-0.10 R(max) 106+/-3.5%, n=6), but had no effect on the relaxations elicited by either sodium nitroprusside (SNP) or 8-bromo-cyclic guanosine monophosphate (8-Br-cGMP). 4-AP (1 mM) also inhibited acetylcholine (3 microM)-stimulated nitrite release in the carotid artery segments (99.4+/-4.93 pmol/mg tissue weight wt; n=6 versus control 123.8+/-7.43 pmol/mg tissue weight wt, n=6). 18alpha-glycyrrhetinic acid (18alpha-GA, 5 microM), a gap junction blocker, completely prevented the inhibition of acetylcholine-induced relaxation, as well as nitrite release by 4-AP. In the pulmonary artery, however antagonism of acetylcholine-evoked relaxation by 4-AP was not reversed by 18alpha-GA. These results suggest that 4-AP-induced inhibition of endothelium-dependent relaxation and NO release involves electrical coupling between vascular smooth muscle and endothelial cells via myo-endothelial gap junctions in the rat carotid artery, but not in the pulmonary artery. Further, direct activation of 4-AP-sensitive vascular K(v) channels by endothelium-derived NO is not evident in the carotid blood vessel, while this appears to be an important mechanism of acetylcholine-induced relaxation in the pulmonary artery.
    [Abstract] [Full Text] [Related] [New Search]