These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Autophagy-inducing agents augment the antitumor effect of telerase-selve oncolytic adenovirus OBP-405 on glioblastoma cells. Author: Yokoyama T, Iwado E, Kondo Y, Aoki H, Hayashi Y, Georgescu MM, Sawaya R, Hess KR, Mills GB, Kawamura H, Hashimoto Y, Urata Y, Fujiwara T, Kondo S. Journal: Gene Ther; 2008 Sep; 15(17):1233-9. PubMed ID: 18580968. Abstract: Oncolytic adenoviruses are a promising tool in cancer therapy. In this study, we characterized the role of autophagy in oncolytic adenovirus-induced therapeutic effects. OBP-405, an oncolytic adenovirus regulated by the human telomerase reverse transcriptase promoter (hTERT-Ad, OBP-301) with a tropism modification (RGD) exhibited a strong antitumor effect on glioblastoma cells. When autophagy was inhibited pharmacologically, the cytotoxicity of OBP-405 was attenuated. In addition, autophagy-deficient Atg5(-/-) mouse embryonic fibroblasts (MEFs) were less sensitive than wild-type MEFs to OBP-405. These findings indicate that OBP-405-induced autophagy is a cell killing effect. Moreover, autophagy-inducing therapies (temozolomide and rapamycin) synergistically sensitized tumor cells to OBP-405 by stimulating the autophagic pathway without altering OBP-405 replication. Mice harboring intracranial tumors treated with OBP-405 and temozolomide survived significantly longer than those treated with temozolomide alone, and mice treated with OBP-405 and the rapamycin analog RAD001 survived significantly longer than those treated with RAD001 alone. The observation that autophagy inducers increase OBP-405 antitumor activity suggests a novel strategy for treating patients with glioblastoma.[Abstract] [Full Text] [Related] [New Search]