These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells.
    Author: Jeong YT, Choi O, Son YD, Park SY, Kim JH.
    Journal: Biotechnol Appl Biochem; 2009 Apr; 52(Pt 4):283-91. PubMed ID: 18590515.
    Abstract:
    Sialic acid, the terminal sugar in N-linked complex glycans, is usually found in glycoproteins and plays a major role in determining the circulatory lifespan of glycoproteins. In the present study we attempted to enhance the sialylation of recombinant EPO (erythropoietin) in CHO (Chinese-hamster ovary) cells. To enhance EPO sialylation, we introduced human alpha2,3-ST (alpha2,3-sialyltransferase) and CMP-SAS (CMP-sialic acid synthase) into recombinant human EPO-producing CHO cells. The sialylation of EPO was increased by the expression of alpha2,3-ST alone. Although the co-expression of alpha2,3-ST and CMP-SAS did not further increase sialylation, an increase in the intracellular pool of CMP-sialic acid was noted. On the basis of these observations, it was postulated that the transport capacity of CMP-sialic acid into the Golgi lumen was limited, thereby causing the reduced availability of CMP-sialic acid substrate for sialylation. Therefore, we co-expressed human alpha2,3-ST and CMP-SAS, as well as overexpress Chinese hamster CMP-sialic acid transporter (CMP-SAT) in CHO cells, which produced recombinant human EPO. When alpha2,3-ST, CMP-SAS, and CMP-SAT were overexpressed in CHO cells, there was a corresponding increase in sialylation compared with the co-expression of alpha2,3-ST and CMP-SAS. The present study provides a useful strategy for enhancing the sialylation of therapeutic glycoproteins produced in CHO cells.
    [Abstract] [Full Text] [Related] [New Search]