These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two different mitotic checkpoint inhibitors of the anaphase-promoting complex/cyclosome antagonize the action of the activator Cdc20.
    Author: Eytan E, Braunstein I, Ganoth D, Teichner A, Hittle JC, Yen TJ, Hershko A.
    Journal: Proc Natl Acad Sci U S A; 2008 Jul 08; 105(27):9181-5. PubMed ID: 18591651.
    Abstract:
    The mitotic checkpoint system ensures the fidelity of chromosome segregation by preventing the completion of mitosis in the presence of any misaligned chromosome. When activated, it blocks the initiation of anaphase by inhibiting the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). Little is known about the biochemical mechanisms by which this system inhibits APC/C, except for the existence of a mitotic checkpoint complex (MCC) inhibitor of APC/C composed of the APC/C activator Cdc20 associated with the checkpoint proteins Mad2, BubR1, and Bub3. We have been studying the mechanisms of the mitotic checkpoint system in extracts that reproduce its downstream events. We found that inhibitory factors are associated with APC/C in the checkpoint-arrested state, which can be recovered from immunoprecipitates. Only a part of the inhibitory activity was caused by MCC [Braunstein I, Miniowitz S, Moshe Y, Hershko A (2007) Proc Natl Acad Sci USA 104:4870-4875]. Here, we show that during exit from checkpoint, rapid disassembly of MCC takes place while APC/C is still inactive. This observation suggested the possible involvement of multiple factors in the regulation of APC/C by the mitotic checkpoint. We have separated a previously unknown inhibitor of APC/C from MCC. This inhibitor, called mitotic checkpoint factor 2 (MCF2), is associated with APC/C only in the checkpoint-arrested state. The inhibition of APC/C by both MCF2 and MCC was decreased at high concentrations of Cdc20. We propose that both MCF2 and MCC inhibit APC/C by antagonizing Cdc20, possibly by interaction with the Cdc20-binding site of APC/C.
    [Abstract] [Full Text] [Related] [New Search]