These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Effects of leaf litter replacement on soil biological and chemical characteristics in main artificial forests in Qinling Mountains].
    Author: Liu ZW, Duan EJ, Gao WJ, Zhang LP, Du HX, Fu G, Cui FF.
    Journal: Ying Yong Sheng Tai Xue Bao; 2008 Apr; 19(4):704-10. PubMed ID: 18593025.
    Abstract:
    Through 2 years leaf litter replacement experiments in 4 typical artificial pure forests Larix kaempferi, Pinus tabulaeformis, Catalpa fargesii, and Quercus aliena var. acuteserrata in Qinling Mountains of China, this paper studied the effects of leaf litter replacement on soil biological and chemical characteristics and the interspecific relationships between different tree species. The results showed that the annual decomposition rate of broad-leaved litter was 33.70% higher than that of needle-leaved litter. The annual decomposition rate of needle-leaved litter increased by 8.35%-12.15% when replaced to broad-leaved forests, whereas that of broad-leaved litter decreased by 5.38%-9.49% when replaced to needle-leaved forests. Leaf litter replacement between needle and broad-leaved forests could increase the contents of soil organic-C and available N, P and K, and the increments were obviously higher in needle-leaved forests (8.70%-35.84%) than in broad-leaved forests (3.73%-10.44%). In needle-leaved forests, the increments with the replacement of C. fargesii litter (24.63%-35.84%) were higher than those with the replacement of Q. aliena var. acuteserrata litter (8.70%-28.15%). Furthermore, the replacement of broad-leaved litter could make the soil pH in needle-leaved forests changed from light-acid to neutral, and increase soil enzyme activities, microbial amounts, and microbial biomass C and N contents. The increments with the replacement of C. fargesii litter were higher than those with the replacement of Q. aliena var. acuteserrata litter. The soil enzyme activities, microbial amounts, and microbial biomass C and N contents in broad-leaved forests after the replacement of needle-leaved litter differed with broadleaved tree species. Q. aliena var. acuteserrata forest had the higher soil enzyme activities and microbial biomass C and N contents, while C. fargesii forest was in adverse. It was suggested that in the control of soil degradation under artificial pure forests, much attention should be paid to the direction of interspecific relationship in mixed forestation and leaf litter replacement.
    [Abstract] [Full Text] [Related] [New Search]