These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A potent antiplatelet peptide, triflavin, from Trimeresurus flavoviridis snake venom.
    Author: Huang TF, Sheu JR, Teng CM.
    Journal: Biochem J; 1991 Jul 15; 277 ( Pt 2)(Pt 2):351-7. PubMed ID: 1859363.
    Abstract:
    The interaction of fibrinogen with its receptors on platelet surfaces leads to platelet aggregation. A snake-venom peptide, trigramin, has previously been demonstrated to inhibit platelet aggregation by acting as a fibrinogen-receptor antagonist. By means of gel filtration, ionic-exchange chromatography and reverse-phase h.p.l.c., a potent platelet-aggregation inhibitor, triflavin, has now been purified from the venom of Trimeresurus flavoviridis. The purified triflavin is a single-chain polypeptide, consisting of about 71 amino acid residues with a molecular mass of 7600 Da, and its N-terminal sequence is Gly-Glu-Glu-Cys-Asp. Triflavin dose-dependently inhibited human platelet aggregation stimulated by ADP, adrenaline, collagen, thrombin or prostaglandin endoperoxide analogue U46619 in preparations of platelet-rich plasma, platelet suspension and whole blood. Its IC50 ranged from 38 to 84 nM, depending on the aggregation inducer used and the platelet preparation. However, triflavin apparently did not affect the platelet shape change and ATP-release reactions caused by these agonists. Triflavin inhibited fibrinogen-induced aggregation of human elastase-treated platelets in a dose-dependent manner, indicating that it directly interferes with the binding of fibrinogen to its receptors on platelet membranes exposed by elastase treatment. Additionally, triflavin dose-dependently blocked 125I-labelled fibrinogen binding to ADP-activated platelets. In conclusion, triflavin inhibits platelet aggregation through the blockade of fibrinogen binding to fibrinogen receptors on platelet membranes.
    [Abstract] [Full Text] [Related] [New Search]