These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biogeochemical C and N cycles in urban soils. Author: Lorenz K, Lal R. Journal: Environ Int; 2009 Jan; 35(1):1-8. PubMed ID: 18597848. Abstract: The percentage of urban population is projected to increase drastically. In 2030, 50.7 to 86.7% of the total population in Africa and Northern America may live in urban areas, respectively. The effects of the attendant increases in urban land uses on biogeochemical C and N cycles are, however, largely unknown. Biogeochemical cycles in urban ecosystems are altered directly and indirectly by human activities. Direct effects include changes in the biological, chemical and physical soil properties and processes in urban soils. Indirect effects of urban environments on biogeochemical cycles may be attributed to the introductions of exotic plant and animal species and atmospheric deposition of pollutants. Urbanization may also affect the regional and global atmospheric climate by the urban heat island and pollution island effect. On the other hand, urban soils have the potential to store large amounts of soil organic carbon (SOC) and, thus, contribute to mitigating increases in atmospheric CO(2) concentrations. However, the amount of SOC stored in urban soils is highly variable in space and time, and depends among others on soil parent material and land use. The SOC pool in 0.3-m depth may range between 16 and 232 Mg ha(-1), and between 15 and 285 Mg ha(-1) in 1-m depth. Thus, depending on the soil replaced or disturbed, urban soils may have higher or lower SOC pools, but very little is known. This review provides an overview of the biogeochemical cycling of C and N in urban soils, with a focus on the effects of urban land use and management on soil organic matter (SOM). In view of the increase in atmospheric CO(2) and reactive N concentrations as a result of urbanization, urban land use planning must also include strategies to sequester C in soil, and also enhance the N sink in urban soils and vegetation. This will strengthen soil ecological functions such as retention of nutrients, hazardous compounds and water, and also improve urban ecosystem services by promoting soil fertility.[Abstract] [Full Text] [Related] [New Search]