These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin, prevents local and remote organ injury following intestinal ischemia/reperfusion in rats.
    Author: Suzuki T, Yamashita K, Jomen W, Ueki S, Aoyagi T, Fukai M, Furukawa H, Umezawa K, Ozaki M, Todo S.
    Journal: J Surg Res; 2008 Sep; 149(1):69-75. PubMed ID: 18599083.
    Abstract:
    BACKGROUND: Nuclear factor-kappaB regulates the expression of several genes involved in inflammation, the immune response, apoptosis, cell survival, and proliferation. Many of these same genes are activated during ischemia/reperfusion (I/R) injury. Here, we examined the anti-inflammatory efficacy of a newly developed nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in the intestinal I/R injury model of rats. MATERIALS AND METHODS: Intestinal ischemia was induced by occluding the superior mesenteric artery for 60 min. The experimental animals were divided into two groups: untreated group, control; treated group, DHMEQ-treated (20 mg/kg). DHMEQ were administered intraperitoneally at 60 min prior to clamping and 5 min prior to reperfusion. Animal survival rates, intestinal tissue blood flow, serum levels of tumor necrosis factor-alpha, and interleukin-6, and the histopathology of both the intestine and the lung were analyzed. RESULTS: The DHMEQ-treated animals exhibited higher values of intestinal tissue blood flow and suppression of tumor necrosis factor-alpha and interleukin-6 production, resulting in marked prolongation of their survival times. Histopathological findings obtained by examining tissues from control animals revealed severe intestinal mucosal damage and disruption of the lung alveolar architecture accompanied by hemorrhage and marked neutrophilic infiltration. These findings were significantly ameliorated in DHMEQ-treated animals. CONCLUSION: DHMEQ effectively prevented both intestine and lung injuries in rat intestinal I/R models. This agent may possess a good potency for clinical application in various pathological settings including intestinal I/R and/or inflammatory acute lung injury.
    [Abstract] [Full Text] [Related] [New Search]