These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Minor role of bystander tolerance to fetal calf serum in a peptide-specific dendritic cell vaccine model against autoimmunity: comparison with serum-free cultures. Author: Röner S, Zinser E, Menges M, Wiethe C, Littmann L, Hänig J, Steinkasserer A, Lutz MB. Journal: J Immunother; 2008 Sep; 31(7):656-64. PubMed ID: 18600179. Abstract: Dendritic cells (DCs) are currently considered as promising tools for vaccination against tumors and also autoimmune responses. A major point of concern has been the use of fetal calf serum (FCS) as a source of heterologous antigen in DC cultures. FCS peptides can be presented by the DCs and cause T-cell responses in the recipient. We investigated the role of FCS in an autoimmune model where DC injections can prevent peptide-specifically from experimental autoimmune encephalomyelitis (EAE). We show that murine bone marrow-derived DCs generated in FCS-containing or serum-free media resulting in a similar phenotype, maturation potential, and functions. Peptide-specific protection could be achieved similarly with FCS-DC or serum-free DCs. Although FCS-DC induced strong CD4 T cell proliferation and cytokine production against FCS, these T cells lack antigenic recall during EAE. Even if FCS was reinjected, the effect on EAE resulted only in a 3-day delay of disease onset. Together, our data show that presentation of bystander antigens by peptide-specific DC vaccinations may have little influence on T-cell responses in vivo if the bystander antigen cannot be recalled by specific T cells.[Abstract] [Full Text] [Related] [New Search]