These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pectenotoxin-2 abolishes constitutively activated NF-kappaB, leading to suppression of NF-kappaB related gene products and potentiation of apoptosis. Author: Kim MO, Moon DO, Heo MS, Lee JD, Jung JH, Kim SK, Choi YH, Kim GY. Journal: Cancer Lett; 2008 Nov 18; 271(1):25-33. PubMed ID: 18602210. Abstract: Although pectenotoxin-2 (PTX-2) is known to modify the actin cytoskeleton, very little is known about its apoptosis mechanism. In this study, we investigated whether PTX-2 induces apoptotic effects through suppression of the NF-kappaB signaling pathway in several leukemia cell types. PTX-2 significantly induced growth inhibition and apoptosis in a dose-dependent manner. Treatment with PTX-2 also significantly increased caspase-3 activity and poly (ADP-ribose) polymerase (PARP) cleavage, however caspase-3 inhibitor z-DEVD-fmk significantly inhibited PTX-2-induced cell death. These data suggest that the activation of caspase-3 is associated with PTX-2-induced apoptosis. NF-kappaB has also been shown to inhibit apoptosis in response to chemotherapeutic agents. As examined by the DNA-binding of NF-kappaB activation, we found that PTX-2 suppressed constitutive NF-kappaB activation and determined by p65 and p50 nuclear translocation, and IkappaBalpha degradation through dephosphorylation of Akt. Attenuation of constitutive NF-kappaB activity by pretreatment with pyrrolidine dithiocarbamate (PDTC), an NF-kappaB nuclear translocation inhibitor, induced significantly apoptosis in the presence of PTX-2. In addition, treatment of PTX-2 down-regulated NF-kappaB-dependent gene expression, Cox-2, IAP-1, IAP-2 and XIAP, at the transcriptional and translational level. Taken together, these results suggest that anti-cancer activities induced by PTX-2 may be mediated in part through suppression of constitutive NF-kappaB activity.[Abstract] [Full Text] [Related] [New Search]