These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrafast excited state dynamics controlling photochemical isomerization of N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium coordinated to a {Re I(CO)3(2,2'-bipyridine)} chromophore.
    Author: Busby M, Hartl F, Matousek P, Towrie M, Vlcek A.
    Journal: Chemistry; 2008; 14(23):6912-23. PubMed ID: 18604857.
    Abstract:
    Two multifunctional photoactive complexes [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+)=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine) were synthesized, characterized, and their redox and photonic properties were investigated by cyclic voltammetry; ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions; and time-resolved resonance Raman spectroscopy. The first reduction step of either complex occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans-->cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3)-->MeDpe(+ 3)MLCT (MLCT=metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximately 42 (73 %) and approximately 430 ps (27 %). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3)-->MeDpe(+) and Re(CO)(3)-->bpy (3)MLCT states, from which a MeDpe(+) localized intraligand (3)pipi* excited state ((3)IL) is populated with lifetimes of approximately 0.6 and approximately 10 ps, respectively. The (3)IL state undergoes a approximately 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle structural variations. The complex [Re(MeDpe(+))(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.
    [Abstract] [Full Text] [Related] [New Search]