These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors. Author: Verkaar F, van Rosmalen JW, Blomenröhr M, van Koppen CJ, Blankesteijn WM, Smits JF, Zaman GJ. Journal: Biotechnol Annu Rev; 2008; 14():253-74. PubMed ID: 18606367. Abstract: Conventional cell-based assays for seven-transmembrane receptors, also known as G protein-coupled receptors, rely on the coupling of the ligand-bound receptor to heterotrimeric G proteins. New assay methods have become available that are not based on G protein activation, but that apply the molecular mechanism underlying the attenuation of G protein signaling mediated by beta-arrestin. beta-arrestin is a cytoplasmic protein that targets receptors to clathrin-coated endocytotic vesicles for degradation or recycling. This process has been visualized and quantified in high-content imaging assays using receptor- or beta-arrestin-chimeras with green fluorescent protein. Other assay methods use bioluminescence resonance energy transfer, enzyme fragment complementation, or a protease-activated transcriptional reporter gene, to measure receptor-beta-arrestin proximity. beta-arrestin recruitment assays have been applied successfully for receptors coupling to Galpha(q), Galpha(s) and Galpha(i) proteins, thus providing a generic assay platform for drug discovery on G protein-coupled receptors. The best understood signal transduction pathway elicited by the seven-transmembrane Frizzled receptors does not involve G proteins. The activation of Frizzleds by their cognate ligands of the Wnt family recruits the phosphoprotein dishevelled. Dishevelled regulates a protein complex involved in the destruction of beta-catenin. Activation of Frizzled blocks degradation of beta-catenin, which translocates to the nucleus to activate transcription of Wnt-responsive genes. The cytoplasm-to-nuclear translocation of beta-catenin forms the basis of several high-content assays to measure Wnt/Frizzled signal transduction. Interestingly, Frizzled receptors have recently been shown to internalize and to recruit beta-arrestin. This suggests that beta-arrestin recruitment assays may be applied for drug discovery on seven-transmembrane receptors beyond G protein-coupled receptors.[Abstract] [Full Text] [Related] [New Search]