These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of acetonitrile with Na-zeolites: adsorption modes and vibrational dynamics in the zeolite channels and cavities.
    Author: Nachtigallová D, Vrbka L, Bludský O, Nachtigall P.
    Journal: Phys Chem Chem Phys; 2008 Jul 28; 10(28):4189-98. PubMed ID: 18612524.
    Abstract:
    The interaction of acetonitrile with the extra-framework Na(+) cations in zeolites, namely Na-LTA and Na-FER, was investigated. The relative stabilities of possible types of adsorption complexes were calculated at the periodic DFT level. Individual effects on the complex stability and on the vibrational dynamics of adsorbed acetonitrile were qualitatively analysed on various cluster models. The acetonitrile primarily interacts with the Na(+) cation (via the N end), and the complex stability is modulated by the interaction of the methyl group with the framework oxygen atoms, which has a partial hydrogen-bond character. In line with the results of recent analyses of CO interactions with metal-exchanged zeolites [D. Nachtigallová, O. Bludský, C. O. Areán, R. Bulanek and P. Nachtigall, Phys. Chem. Chem. Phys., 2006, 8, 4849], two types of effects should be taken into consideration for acetonitrile complexes in Na-zeolites: (i) the effects from the bottom, reflecting the accessibility and coordination of the primary metal cation, to which the acetonitrile molecule is bonded via the N atom; and (ii) the effects from the top, including H-bond formation (stabilising effect) or repulsion due to the secondary metal cation. The effect from the bottom results in a blue shift of nu(CN) while the effect from the top (H-bond formation) results in a red shift in both nu(CN) and nu(CH).
    [Abstract] [Full Text] [Related] [New Search]