These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile.
    Author: Kobayashi Y, Hirano S.
    Journal: Toxicol Appl Pharmacol; 2008 Oct 01; 232(1):33-40. PubMed ID: 18619986.
    Abstract:
    Trivalent arsenicals such as arsenite (iAs(III)), monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) are more toxic than analogous pentavalent compounds such as arsenate (iAs(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)). It has been reported that arsenic-glutathione (As-GSH) complexes such as arsenic triglutathione (ATG) and methylarsenic diglutathione (MADG) are major metabolites in rat bile following intravenous administration of iAs(III). Recently, we have shown that both ATG and MADG are unstable and easily hydrolyzed to iAs(III) and MMA(III), respectively, and that MMA(III) is oxidized to MMA(V) in bile. In the present study we report the effects of H(2)O(2) and GSH on the stability of As-GSH complexes in rat bile. Male SD rats were injected intravenously with saline or iAs(III) at a dose of 0.2 or 2.0 mg As/kg body weight, and bile fluid was collected on ice for 30 min. To estimate the stability of As-GSH complexes in bile, ATG or MADG was added to untreated, heat-treated, catalase-treated, or dialyzed bile, and then incubated at 37 degrees C for 10 min. Concentrations of biliary H(2)O(2) and GSH in the higher dose group were 12.6- and 4.5-times higher than the control value, respectively. Exogenously added trivalent arsenicals were oxidized to pentavalent arsenicals in the bile depending on the biliary concentration of H(2)O(2). Both catalase and dialysis prevented oxidation of trivalent arsenicals to the corresponding pentavalent compounds. Exogenously added GSH stabilized As-GSH complexes in bile. These results suggest that H(2)O(2) converts trivalent arsenicals to less toxic pentavalent arsenicals, whereas GSH prevents hydrolysis of As-GSH complexes and the generation of unconjugated toxic trivalent arsenicals.
    [Abstract] [Full Text] [Related] [New Search]