These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spectral properties and inclusion of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one in organized media of micellar solutions, beta-cyclodextrin and viscous medium.
    Author: Gaber M, El-Daly SA, El-Sayed YS.
    Journal: Colloids Surf B Biointerfaces; 2008 Oct 01; 66(1):103-9. PubMed ID: 18621510.
    Abstract:
    On the line of a previous work on the spectral properties of some of heteroaryl chalcone, the absorption and fluorescence emission spectral properties of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP), have been investigated in organized media of aqueous micellar and beta-cyclodextrin (beta-CD) solutions. While the absorption spectra are less sensitive to the nature of the added surfactant or beta-CD, the characteristics of the intramolecular charge transfer (ICT) fluorescence are highly sensitive to the properties of the medium. The ICT maximum is strongly blue-shifted with a great enhancement in the fluorescence quantum yield on adding micellar or beta-CD. This indicates the solubilization of DMAFP in the micellar core and formation of an inclusion complex with beta-CD. The critical micelle concentrations (CMC) as well as the polarity of the micellar core of SDS, CTAB and TX-100 have been determined. The CMC values are in good agreement with the reported values while the polarity is lower indicating that DMAFP molecules are incorporated in the micellar core not at the micellar interface. The inclusion constants of binding of DMAFP in micellar or beta-CD have been also determined. The thermodynamic parameters of formation of DMAFP:CD inclusion complex have been calculated from the temperature dependence of the fluorescence spectra of the formed complex. The highly negative value of formation entropy (DeltaS=-98.0Jmol(-1)K(-1)) reflects the high restrictions imposed on the movement of both the host and included guest molecules which is consistent with the increase of the fluorescence yield and blue shift of the fluorescence maximum.
    [Abstract] [Full Text] [Related] [New Search]