These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of calmidazolium on [Ca2+]i and viability in human hepatoma cells. Author: Liao WC, Huang CC, Cheng HH, Wang JL, Lin KL, Cheng JS, Chai KL, Hsu PT, Tsai JY, Fang YC, Lu YC, Chang HT, Huang JK, Chou CT, Jan CR. Journal: Arch Toxicol; 2009 Jan; 83(1):61-8. PubMed ID: 18629476. Abstract: The effect of calmidazolium on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in human hepatoma cells. This study examined whether calmidazolium altered [Ca2+]i and caused cell death in HA59T cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Calmidazolium at concentrations > or =1 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1.5 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Calmidazolium induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was insensitive to L-type Ca2+ entry blockers, but was inhibited partly by enhancing or inhibiting protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), calmidazolium-induced [Ca2+]i rises were largely inhibited; and conversely, calmidazolium pretreatment totally suppressed thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change calmidazolium-induced [Ca2+]i rises. At concentrations between 1 and 15 microM, calmidazolium induced apoptosis-mediated cell death. Collectively, in HA59T hepatoma cells, calmidazolium induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via protein kinase C-regulated Ca2+ entry pathway. Calmidazolium caused cytotoxicity via apoptosis.[Abstract] [Full Text] [Related] [New Search]