These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells.
    Author: Kolios G, Valatas V, Manousou P, Xidakis C, Notas G, Kouroumalis E.
    Journal: Mol Cell Biochem; 2008 Dec; 319(1-2):91-8. PubMed ID: 18629611.
    Abstract:
    Nitric oxide (NO) and Monocyte Chemoattractant Protein (MCP)-1 co-regulation has been found in endotoxin-activated macrophages. Kupffer cells (KC) are a main source of soluble-mediators production in liver abnormalities. We investigated in vitro similar co-regulation of NO and MCP-1 production in rat activated KC. Isolated rat KC were cultured in the presence of 1 microg/ml LPS and various concentrations of Wortmannin (0-300 nM), L-NAME (0-500 microM) or MCP-1 (0-100 ng/ml). Production of MCP-1 and NO were measured in supernatants, by ELISA and a modification of the Griess reaction, respectively. Growth arrested KC, stimulated with vehicle, produced a basal amount of NO and MCP-1. In the presence of LPS, cultured KC secreted significantly (P < 0.01) increased amounts of MCP-1 and NO. Pre-treatment of KC with various concentrations of L-NAME significantly (P < 0.05) reduced the LPS-induced secretion of NO in a concentration dependent manner, but the MCP-1 production remained unaffected. Pre-treatment with Wortmannin significantly (P < 0.05) inhibited LPS-induced secretion of MCP-1 and NO in a concentration dependent manner. Linear regression analysis revealed a positive correlation between MCP-1 and NO in the LPS (r = 0.59171, P < 0.0001) and Wortmannin (r = 0.9215, P = 0.009) treated groups, but not in the L-NAME (r = -0.08513, P = 0.873). Incubation of KC with various concentrations of MCP-1 did not increase the NO production. These results indicate that KC might be the main source of NO and MCP-1 production in liver disorders, probably through the induction of PI3-kinase(s) and without any co-regulation between these molecules, which might represent two independent immunoregulatory pathways in the role of KC in hepatic disorders.
    [Abstract] [Full Text] [Related] [New Search]