These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: How myasthenia gravis alters the safety factor for neuromuscular transmission. Author: Ruff RL, Lennon VA. Journal: J Neuroimmunol; 2008 Sep 15; 201-202():13-20. PubMed ID: 18632162. Abstract: Myasthenia gravis (MG), the most common of autoimmune myasthenic syndromes, is characterized by antibodies directed against the skeletal muscle acetylcholine receptors (AChRs). Endplate Na(+) channels ensure the efficiency of neuromuscular transmission by reducing the threshold depolarization needed to trigger an action potential. Postsynaptic AChRs and voltage-gated Na(+) channels are both lost from the neuromuscular junction in MG. This study examined the impact of postsynaptic voltage-gated Na(+) channel loss on the safety factor for neuromuscular transmission. In intercostal nerve-muscle preparations from MG patients, we found that endplate AChR loss decreases the size of the endplate potential, and endplate Na(+) channel loss increases the threshold depolarization needed to produce a muscle action potential. To evaluate whether AChR-specific antibody impairs the function of Na(+) channels, we tested omohyoid nerve-muscle preparations from rats injected with monoclonal myasthenogenic IgG (passive transfer model of MG [PTMG]). The AChR antibody that produces PTMG did not alter the function of Na(+) channels. We conclude that loss of endplate Na(+) channels in MG is due to complement-mediated loss of endplate membrane rather than a direct effect of myasthenogenic antibodies on endplate Na(+) channels.[Abstract] [Full Text] [Related] [New Search]