These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus.
    Author: Daroit DJ, Simonetti A, Hertz PF, Brandelli A.
    Journal: J Microbiol Biotechnol; 2008 May; 18(5):933-41. PubMed ID: 18633294.
    Abstract:
    An extracellular beta-glucosidase produced by Monascus purpureus NRRL1992 in submerged cultivation was purified by acetone precipitation, gel filtration, and hydrophobic interaction chromatography, resulting in a purification factor of 92-fold. A 22 central-composite design (CCD) was performed to find the best temperature and pH conditions for enzyme activity. Maximum activity was observed in a wide range of temperature and pH values, with optimal conditions set at 50 degrees and pH 5.5. The beta-glucosidase showed moderate thermostability, was inhibited by HgCl2, K2CrO4, and K2Cr2O7, whereas other reagents including beta- mercaptoethanol, SDS, and EDTA showed no effect. Activity was slightly stimulated by low concentrations of ethanol and methanol. Hydrolysis of p-nitrophenyl-beta-D-glucopyranoside (pNPG), cellobiose, salicin, n-octyl-beta-D-glucopyranoside, and maltose indicates that the beta-glucosidase has broad substrate specificity. Apparently, glucosyl residues were removed from the nonreducing end of p-nitrophenyl-beta-Dcellobiose. beta-Glucosidase affinity and hydrolytic efficiency were higher for pNPG, followed by maltose and cellobiose. Glucose and cellobiose competitively inhibited pNPG hydrolysis.
    [Abstract] [Full Text] [Related] [New Search]