These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Femtosecond laser ablation inductively coupled plasma mass spectrometry: fundamentals and capabilities for depth profiling analysis.
    Author: Pisonero J, Günther D.
    Journal: Mass Spectrom Rev; 2008; 27(6):609-23. PubMed ID: 18636536.
    Abstract:
    Laser ablation coupled to inductively coupled plasma mass spectrometry has become a versatile and powerful analytical method for direct solid analysis. The applicability has been demonstrated on a wide variety of samples, where major, minor, and trace element concentrations or isotope ratio determinations have been of interest. The pros and cons of UV-nsec laser ablation have been studied in detail, and indicate that aerosol generation, aerosol transport, and aerosol excitation-ionization within the ICP contribute to fractionation effects, which prevent this method from a more universal application to all matrices and all elements. Recent progresses in IR-fs and UV-fs laser ablation coupled to ICP-MS have been reported, which increase the inter-matrix and multi-element quantification capabilities of this method. These fundamental improvements in LA-ICP-MS are of significant importance for entering new applications in material science and related research fields. In particular, because coatings (conducting and non-conducting) consist of single or multilayers of various elemental composition and of different thickness (nm-mm range), significant progress in the field of depth profiling with fs-laser ablation can be expected. Therefore, in-depth profile analysis of polymers, semiconductors, and metal sample investigations, using ultra-fast laser ablation for sampling and the currently achievable figures of merit, are discussed. In this review manuscript, the enhanced capabilities of fs-LA-ICP-MS for direct solid sampling are highlighted, and it is discussed about current methods used for quantitative analysis and depth profiling, the ablation process of UV-ns and UV-fs, the influence of the laser beam profile, aerosol structure and transport efficiency, as well as the influence of the ICP-MS (e.g., vaporization and ionization efficiency in the plasma, and type of mass analyzer).
    [Abstract] [Full Text] [Related] [New Search]