These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Author: Verdoucq L, Grondin A, Maurel C. Journal: Biochem J; 2008 Nov 01; 415(3):409-16. PubMed ID: 18637793. Abstract: Water channel proteins, AQPs (aquaporins), of the PIP (plasma membrane intrinsic protein) subfamily, provide a means for fine and quick adjustments of the plant water status. A molecular model for gating of PIPs by cytosolic protons (H(+)) and divalent cations was derived from the atomic structure of spinach SoPIP2;1 (Spinacia oleracea PIP2;1) in an open- and a closed-pore conformation. In the present study, we produced the Arabidopsis AtPIP2;1 (Arabidopsis thaliana PIP2;1) homologue in Pichia pastoris, either WT (wild-type) or mutations at residues supposedly involved in gating. Stopped-flow spectrophotometric measurements showed that, upon reconstitution in proteoliposomes, all forms function as water channels. The first functional evidence for a direct gating of PIPs by divalent (bivalent) cations was obtained. In particular, cadmium and manganese were identified, in addition to calcium (Ca(2+)) and H(+) as potent inhibitors of WT AtPIP2;1. Our results further show that His(199), the previously identified site for H(+) sensing, but also N-terminal located Glu(31), and to a lesser extent Asp(28), are involved in both divalent-cation- and H(+)-mediated gating. In contrast, mutation of Arg(124) rendered AtPIP2;1 largely insensitive to Ca(2+) while remaining fully sensitive to H(+). The role of these residues in binding divalent cations and/or stabilizing the open or closed pore conformations is discussed.[Abstract] [Full Text] [Related] [New Search]