These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex.
    Author: Wisniewska M, Goettig P, Maskos K, Belouski E, Winters D, Hecht R, Black R, Bode W.
    Journal: J Mol Biol; 2008 Sep 19; 381(5):1307-19. PubMed ID: 18638486.
    Abstract:
    TIMP-3 (tissue inhibitor of metalloproteinases 3) is unique among the TIMP inhibitors, in that it effectively inhibits the TNF-alpha converting enzyme (TACE). In order to understand this selective capability of inhibition, we crystallized the complex formed by the catalytic domain of recombinant human TACE and the N-terminal domain of TIMP-3 (N-TIMP-3), and determined its molecular structure with X-ray data to 2.3 A resolution. The structure reveals that TIMP-3 exhibits a fold similar to those of TIMP-1 and TIMP-2, and interacts through its functional binding edge, which consists of the N-terminal segment and other loops, with the active-site cleft of TACE in a manner similar to that of matrix metalloproteinases (MMPs). Therefore, the mechanism of TIMP-3 binding toward TACE is not fundamentally different from that previously elucidated for the MMPs. The Phe34 phenyl side chain situated at the tip of the relatively short sA-sB loop of TIMP-3 extends into a unique hydrophobic groove of the TACE surface, and two Leu residues in the adjacent sC-connector and sE-sF loops are tightly packed in the interface allowing favourable interactions, in agreement with predictions obtained by systematic mutations by Gillian Murphy's group. The combination of favourable functional epitopes together with a considerable flexibility renders TIMP-3 an efficient TACE inhibitor. This structure might provide means to design more efficient TIMP inhibitors of TACE.
    [Abstract] [Full Text] [Related] [New Search]