These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of heme-coordinating histidyl residues of an engineered six-coordinated myoglobin mutant based on the reactivity with diethylpyrocarbonate, mass spectrometry, and electron paramagnetic resonance spectroscopy.
    Author: Nakanishi N, Takeuchi F, Park SY, Hori H, Kiyota K, Uno T, Tsubaki M.
    Journal: J Biosci Bioeng; 2008 Jun; 105(6):604-13. PubMed ID: 18640599.
    Abstract:
    A genetically engineered porcine myoglobin triple mutant (H64V/V68H/H93A) (VHA-Mb) contains 6 non-axial His residues (His24, His36, His48, His81, His82, and His119) besides two candidate axial His residues (His68 and His97). Although previous resonance Raman study on the ferric VHA-Mb were not conclusive for its coordination structure, present EPR parameters of the ferric VHA-Mb were consistent with bis-imidazole coordination of His68/His97. We further investigated the reactivity of these possible His ligands with diethylpyrocarbonate (DEPC) to clarify the coordination structure and their protonation states in ferric form. We found that the non-axial His residues were easily modified with a low concentration of DEPC based on UV spectral changes and MALDI-TOF-MS analyses. On the other hand, the two candidate axial His ligands were protected from the modification due to a limited steric exposure of their imidazoles to solvent, the Fe(3+)-N(epsilon2) coordination bond, and the protonation of N(delta1) by forming a hydrogen bond with their immediate surroundings. However, once N-carbethoxylation occurred at N(epsilon2) of His97, resulting in a disruption of the heme Fe(3+)-N(epsilon2) coordination bond, it facilitated the second N-carbethoxylation to take place at N(delta1) of the same imidazole ring, leading to a bis-N-carbethoxylated derivative and further to a ring-opened derivative. These phenomena were consistent with the bis-His68/His97 coordination. Further, these were not observed at all for cytochrome b(561), a transmembrane di-heme containing protein responsible for the ascorbate-specific transmembrane electron transfer, where only a specific N(delta1)-carbethoxylation of axial His occurred at a low concentration of DEPC, leading to an inhibition of the electron acceptance from ascorbate without a release of the heme. These distinct results might be related to a specific physiological mechanism being operative at the cytosolic heme center of cytochrome b(561).
    [Abstract] [Full Text] [Related] [New Search]