These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Author: Harvey MC, Polf JC, Smith AR, Mohan R.
    Journal: Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454.
    Abstract:
    The purpose of this work was to determine the feasibility of producing a spread out Bragg peak (SOBP) without a range modulation wheel (RMW) using the passive scattering beam delivery technique. For this study, a comprehensive Monte Carlo model of a passive scattering treatment nozzle was used. The RMW was removed from the model leaving only the initial fixed scatterer (RMW-free configuration). Range modulation was achieved by directly changing the energy of the proton beam entering the nozzle. To produce a uniform SOBP, the number of protons injected into the nozzle at each beam energy was "dose weighted." To do so, the effective number of protons was calculated for the individual initial energies using an analytical dose-weighting function, and the resulting weighted Bragg curves were summed together to produce an SOBP of the desired width. We found that SOBPs calculated using the RMW-free nozzle configuration were in very good agreement to those calculated with the standard nozzle configuration containing the RMW for the 250, 180, and 100 MeV maximum beam energies. The depth of the distal 90% dose and the 80%-20% distal dose falloff of SOBPs calculated with the two different nozzle configurations agreed to within a millimeter for the three beam energy options considered in this study. In addition, the 80%-20% lateral penumbra for the cross-field dose profiles calculated with the RMW-free delivery method agreed with results calculated using the standard RMW technique to less than one millimeter. For an equal number of protons injected into the nozzle, an increase of up to 10% in the delivered dose and a significant reduction in both the in-air secondary neutron fluence and dose equivalent (H/D) were observed at the isocenter by removing the RMW from the treatment nozzle and modulating the initial proton beam energy. However, increases in delivery time of up to 70% were also estimated with this method. Our results suggest that it is feasible to deliver a passively scattered dose distribution with an RMW-free nozzle configuration with clinical characteristics comparable to those using standard methods.
    [Abstract] [Full Text] [Related] [New Search]