These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Author: Dong D, Zhao X, Hua X, Liu J, Gao M. Journal: J Hazard Mater; 2009 Mar 15; 162(2-3):1261-8. PubMed ID: 18650011. Abstract: The adsorption/desorption of Pb, Cd and Cr(VI) on moderately contaminated farmland soils in Northeast China and the effect of pH value on adsorption/desorption were investigated. Soil column leaching experiment was also carried out to further understand the mobility of the three metals in aeration zone of soil. Both Langmuir and Freundlich model gave good fits to the adsorption data of Pb and Cd, while the adsorption data of Cr(VI) followed linear adsorption isotherm. The adsorption/desorption of Pb, Cd and Cr(VI) obtained equilibrium in a few hours. Adsorption amounts of the three metals decreased in the order: Pb>Cd>>Cr(VI). Desorption of the metals was insignificant at pH 5.0. Pb and Cd adsorption increased with pH, while Cr(VI) decreased. The effect of pH on desorption was contrary to that of adsorption. Leaching experiment showed that the mobility of these metals followed the order of Cr(VI)>>Cd>Pb, which was consistent with the adsorption/desorption study. The results suggest that once soil is polluted by wastewater containing Pb and Cd, Pb and Cd tend to accumulating in topsoil and move downward very slowly, while the mobility of Cr(VI) in soil/groundwater system is much high because only limited amount of Cr(VI) were adsorbed by soil.[Abstract] [Full Text] [Related] [New Search]