These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. Author: Daetwyler HD, Schenkel FS, Sargolzaei M, Robinson JA. Journal: J Dairy Sci; 2008 Aug; 91(8):3225-36. PubMed ID: 18650300. Abstract: Genome scans for detection of bovine quantitative trait loci (QTL) were performed via variance component linkage analysis and linkage disequilibrium single-locus regression (LDRM). Four hundred eighty-four Holstein sires, of which 427 were from 10 grandsire families, were genotyped for 9,919 single nucleotide polymorphisms (SNP) using the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP array. A hybrid of the grand-daughter and selective genotyping designs was applied. Four thousand eight hundred fifty-six of the 9,919 SNP were located to chromosomes in base-pairs and formed the basis for the analyses. The mean polymorphism information content of the SNP was 0.25. The SNP centimorgan position was interpolated from their base-pair position using a microsatellite framework map. Estimated breeding values were used as observations, and the following traits were analyzed: 305-d lactation milk, fat, and protein yield; somatic cell score; herd life; interval of calving to first service; and age at first service. The variance component linkage analysis detected 102 potential QTL, whereas LDRM analysis found 144 significant SNP associations after accounting for a 5% false discovery rate. Twenty potential QTL and 49 significant SNP associations were in close proximity to QTL cited in the literature. Both methods found significant regions on Bos taurus autosome (BTA) 3, 5, and 16 for milk yield; BTA 14 and 19 for fat yield; BTA 1, 3, 16, and 28 for protein yield; BTA 2 and 13 for calving to first service; and BTA 14 for age at first service. Both approaches were effective in detecting potential QTL with a dense SNP map. The LDRM was well suited for a first genome scan due to its approximately 8 times lower computational demands. Further fine mapping should be applied on the chromosomal regions of interest found in this study.[Abstract] [Full Text] [Related] [New Search]