These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance.
    Author: Macdonald WA, Nielsen OB, Clausen T.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1214-23. PubMed ID: 18650319.
    Abstract:
    Intense exercise causes a large loss of K(+) from contracting muscles. The ensuing elevation of extracellular K(+) ([K(+)](o)) has been suggested to cause fatigue by depressing muscle fiber excitability. In isolated muscles, however, repeated contractions confer some protection against this effect of elevated K(+). We hypothesize that this excitation-induced force-recovery is related to the release of the neuropeptide calcitonin gene-related peptide (CGRP), which stimulates the muscular Na(+)-K(+) pumps. Using the specific CGRP antagonist CGRP-(8-37), we evaluated the role of CGRP in the excitation-induced force recovery and examined possible mechanisms. Intact rat soleus muscles were stimulated to evoke short tetani at regular intervals. Increasing extracellular K(+) ([K(+)](o)) from 4 to 11 mM decreased force to approximately 20% of initial force (P < 0.001). Addition of exogenous CGRP (10(-9) M), release of endogenous CGRP with capsaicin, or repeated electrical stimulation recovered force to 50-70% of initial force (P < 0.001). In all cases, force recovery could be almost completely suppressed by CGRP-(8-37). At 11 mM [K(+)](o), CGRP (10(-8) M) did not alter resting membrane potential or conductance but significantly improved action potentials (P < 0.001) and increased the proportion of excitable fibers from 32 to 70% (P < 0.001). CGRP was shown to induce substantial force recovery with only modest Na(+)-K(+) pump stimulation. We conclude that the excitation-induced force recovery is caused by a recovery of excitability, induced by local release of CGRP. The data suggest that the recovery of excitability partly was induced by Na(+)-K(+) pump stimulation and partly by altering Na(+) channel function.
    [Abstract] [Full Text] [Related] [New Search]