These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Paracrinology of growth regulation.
    Author: Hill DJ, Han VK.
    Journal: J Dev Physiol; 1991 Feb; 15(2):91-104. PubMed ID: 1865096.
    Abstract:
    Embryonic and fetal growth is dependent on genetic factors and epigenetic factors such as peptide growth factors. We describe here the interactions of several peptide growth factors during the growth and function of two cell types, growth plate chondrocytes from the ovine fetus and astroglial cells from the newborn rat cerebral cortex. Isolated chondrocytes released two endogenous growth factors, basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF II). Although the latter was released in greater abundance, as detected by radioimmunoassay, exogenous bFGF was more than a thousand fold more active as a mitogen. Insulin was also able to increase chondrocyte replication at physiological concentrations, and bFGF, insulin and IGFs were additive in their effects on DNA and protein synthesis. Transforming growth factor beta (TGF beta), which is abundant in bone, had little effect on chondrocyte DNA or total protein synthesis alone, but blocked the stimulatory actions of insulin and IGFs on these parameters. However, TGF beta when alone or in combination caused an increase in the collagen: non collagenous protein ratio of new proteins synthesized by chondrocytes. Adult rat brain is a rich source of IGF II, and both IGF I and II are present during neurogenesis and gliagenesis in the fetal and neonatal rat respectively. We have cultured astroglial cells isolated from neonatal rat cerebral cortex to examine the production and interaction of peptide growth factors during their growth. Isolated astroglial cells contained mRNAs encoding both IGF I and II but abundance was not regulated by other hormones or growth factors. Using affinity cross-linking we found that cultured cells also released two species of IGF binding protein (IGF-BP) of 33 kDa and 38 kDa. Northern blot analysis using homologous cDNA probes showed that astroglial cells expressed IGF-BP2 and BP3, but little BP1. Both IGF I and II were mitogenic for astroglial cells, as was insulin at physiologic concentrations. Exogenous IGF-BP2 was able to modulate the mitogenic actions of exogenous IGF I. These two very different cell models show many similarities of endogenous growth control. Both release IGFs and IGF-BPs which regulate mitogenic rate. In addition, in both insulin functions as a growth factor at physiologic concentrations. These findings suggest common principles governing embryonic and fetal growth and development. Studies have shown that fetal and neonatal growth is independent of regulation by classic hormones (e.g. growth hormones) synthesized by the mother or the fetus. It is believed that embryonic and fetal growth is controlled by two major mechanisms, namely, (i) the genetic factors as determined by the embryonic and fetal genome, and (ii) the epigenetic and environmental factors that alter the expression of the embryonic or fetal genome.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]