These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of the epidermis in the control of scarring: evidence for mechanism of action for silicone gel.
    Author: Tandara AA, Mustoe TA.
    Journal: J Plast Reconstr Aesthet Surg; 2008 Oct; 61(10):1219-25. PubMed ID: 18653391.
    Abstract:
    Hypertrophic scars can be reduced by the application of silicone dressing; however, the detailed mechanism of silicone action is still unknown. It is known that silicone gel sheets cause a hydration of the epidermal layer of the skin. An in vitro co-culture experiment has shown that hydration of keratinocytes has a suppressive effect on the metabolism of the underlying fibroblasts resulting in reduced collagen deposition. We tested the hypothesis that silicone sheeting in vivo has a beneficial effect on scarring by reducing keratinocyte stimulation, with a resulting decrease in dermal thickness, hence scar hypertrophy. Silicone adhesive gel sheets were applied to scars in our rabbit ear model of hypertrophic scarring 14 days postwounding for a total of 16 days. Scarring was measured in this model by the scar elevation index (SEI), a ratio of the area of newly formed dermis to the area of the dermis of unwounded skin, and the epidermal thickness index (ETI), a ratio of the averaged epidermal height of the scar to the epidermal thickness of normal epidermis. Specific staining [anti-PCNA (proliferating cell nuclear antigen) and Masson trichrome] was performed to reveal differences in scar morphology. SEIs were significantly reduced after silicone gel sheet application versus untreated scars corresponding to a 70% reduction in scar hypertrophy. Total occlusion reduced scar hypertrophy by 80% compared to semi-occlusion. ETIs of untreated scars were increased by more than 100% compared to uninjured skin. Silicone gel treatment significantly reduced epidermal thickness by more than 30%. Our findings demonstrate that 2 weeks of silicone gel application at a very early onset of scarring reduces dermal and epidermal thickness which appears to be due to a reduction in keratinocyte stimulation. Oxygen can be ruled out as a mechanism of action of silicone occlusive treatment. Hydration of the keratinocytes seems to be the key stimulus.
    [Abstract] [Full Text] [Related] [New Search]