These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of an ecologically sustainable wastewater treatment system.
    Author: Kumar L, Ranjan R, Sabumon PC.
    Journal: Water Sci Technol; 2008; 58(1):7-12. PubMed ID: 18653930.
    Abstract:
    The present study aimed mainly for the development of a wastewater treatment system incorporating enhanced primary treatment, anaerobic digestion of coagulated organics, biofilm aerobic process for the removal of soluble organics and disinfection of treated water. An attempt was also made to study the reuse potential of treated water for irrigation and use of digested sludge as soil conditioner by growing marigold plants. Ferric chloride dose of 30 mg/l was found to be the optimum dose for enhanced primary treatment with removals of COD and BOD to the extent of 60% and 77%, respectively. Efficient anaerobic digestion of ferric coagulated sludge was performed at 7 days hydraulic retention time (HRT). Upflow aerobic fixed film reactor (UAFFR) was very efficient in removals of COD/BOD in the organic loading rate (OLR) range of 0.25 to 3 kg COD/m(3)/day with COD and BOD removals in the range 65-90 and 82-96, respectively. Photo-oxidation followed by disinfection saved 50% of chlorine dose required for disinfection of treated effluent and treated water was found to be suitable for irrigation. The result also indicated that anaerobically digested sludge may be an excellent soil conditioner. From the results of this study, it is possible to conclude that the developed wastewater treatment system is an attractive ecologically sustainable alternative for sewage treatment from institutional/industrial/residential campuses.
    [Abstract] [Full Text] [Related] [New Search]