These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A new reaction path for the C + NO reaction: dynamics on the 4A'' potential-energy surface. Author: Abrahamsson E, Andersson S, Marković N, Nyman G. Journal: Phys Chem Chem Phys; 2008 Aug 14; 10(30):4400-9. PubMed ID: 18654679. Abstract: We present a new reaction path without significant barriers for the C + NO reaction, forming ground state N((4)S) and CO. Electronic structure (CASPT2) calculations have been performed for the two lowest (4)A'' states of the CNO system. The lowest of these states shows no significant barriers against reaction in the C + NO or O + CN channels. This surface has been fitted to an analytical function using a many-body expansion. Using this surface, and the previously published (2)A' and (2)A'' surfaces [Andersson et al., Phys. Chem. Chem. Phys., 2000, 2, 613; Andersson et al., Chem. Phys., 2000, 259, 99], we have performed quasiclassical trajectory (QCT) calculations, obtaining rate coefficients for the C((3)P) + NO(X(2)Pi) --> CO(X(1)Sigma(+)) + N((4)S,(2)D) and C((3)P) + NO(X(2)Pi) --> O((3)P) + CN(X(2)Sigma(+)) reactions. We have also simulated the crossed molecular beam experiments of Naulin et al. [Chem. Phys., 1991, 153, 519] The inclusion of the (4)A'' surface in the QCT calculations gives excellent agreement with experiments. This is the first time an adiabatic pathway from C((3)P) + NO(X(2)Pi) to CO(X(1)Sigma(+))+N((4)S) has been reported.[Abstract] [Full Text] [Related] [New Search]