These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel model to study metaphyseal bone healing under defined biomechanical conditions. Author: Claes L, Veeser A, Göckelmann M, Simon U, Ignatius A. Journal: Arch Orthop Trauma Surg; 2009 Jul; 129(7):923-8. PubMed ID: 18654792. Abstract: INTRODUCTION: Experimental studies on metaphyseal fractures are rare and do not control the biomechanical conditions in the healing zone. This study aimed to develop an improved experimental model, which characterizes and controls the biomechanical condition in the fracture gap of a metaphyseal fracture. MATERIALS AND METHODS: A partial osteotomy model in the distal femur of the sheep was developed. The osteotomy was located in the region of the trochlea groove. The osteotomy gap was 3 mm wide. The retro-patellar force acting on the joint in vivo causes a bending of the trochlea resulting in a narrowing of the osteotomy gap. To limit and control this interfragmentary movement, stainless steel plates of various thicknesses were implanted into the osteotomy gap. Forces acting on the trochlea were analyzed and a load-deflection curve of the model was determined in vitro. A pilot study on two sheep was performed using the new model with two different interfragmentary movements of 0.3 or 1 mm. Eight weeks, post-operatively, the sheep were sacrificed and undecalcified histology was performed. RESULTS: The biomechanical analysis of the joint forces and the in vitro load-deflection behavior of the trochlea revealed that the forces acting on the trochlea were high enough to cause an interfragmentary movement of 1 mm in the osteotomy gap. This was confirmed by an X-ray of the sheep, which showed a closing of the proximal osteotomy gap under weight-bearing conditions. The histological section revealed no external callus formation. The sheep with the 0.3 mm interfragmentary movement showed almost complete bridging of the osteotomy gap with woven bone whereas the sheep with the 1 mm interfragmentary movement exhibited new bone formation only at the borderline of the osteotomy but larger areas with connective tissue or even fibrous cartilage in the center of the gap. CONCLUSION: This metaphyseal bone-healing model provides defined and adjustable biomechanical conditions. The histological images demonstrated intramembranous and endochondral bone healing in the osteotomy gap without callus formation. The model therefore seems appropriate to study metaphyseal bone healing under differing mechanical conditions.[Abstract] [Full Text] [Related] [New Search]