These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential adhesion of Streptococcus gordonii to anatase and rutile titanium dioxide surfaces with and without functionalization with chlorhexidine.
    Author: Barbour ME, Gandhi N, el-Turki A, O'Sullivan DJ, Jagger DC.
    Journal: J Biomed Mater Res A; 2009 Sep 15; 90(4):993-8. PubMed ID: 18655136.
    Abstract:
    The majority of dental implants are composed primarily of titanium and have an outer layer of titanium dioxide. Crystalline titanium dioxide most commonly exists in one of the two structures, anatase and rutile, and both of these have been observed on commercially available dental implants. Early implant failure can be associated with postoperative infection due to implant contamination during or immediately after surgery. The impetus of this study was to investigate whether functionalization of anatase and rutile titanium dioxide surfaces with chlorhexidine-reduced subsequent colonization of the surface by Streptococcus gordonii. Exposure to 100 mg x L(-1) chlorhexidine for 60 s resulted in a fivefold reduction in S. gordonii coverage on anatase and a twofold reduction on rutile. This may be related to a preferential adsorption of chlorhexidine to anatase compared with rutile. The reduction in bacterial coverage was not due to desorption of chlorhexidine into solution. More bacteria were observed on anatase than rutile surfaces without chlorhexidine functionalization, indicating that crystal structure may have a significant effect on bacterial colonization. In conclusion, functionalization with chlorhexidine reduced bacterial coverage on titanium dioxide surfaces, and anatase surfaces may be more amenable to such treatment than rutile.
    [Abstract] [Full Text] [Related] [New Search]